

Peerpy documentation

This module provides a high-level API for discovering and connecting multiple devices on a local network, without the headache of implementing python’s built-in socket module!

Note

Peerpy is built on top of the python’s builtin socket module, using threading for parallel computing, naming:

	your application code

	listening for connections

	sending/receiving data

	sending/answering pings

Note

This module allows to quickly link the application layer (your application) to the transport layer (provided by python’s socket module) of the OSI model [https://en.wikipedia.org/wiki/OSI_model].

What is it made for?

	IoT devices (e.g. Rasberry Pi)

	Blockchain

	Fast proof of concepts

Installation

pip install peerpy

Source code

Please refer to python sources documentation or peerpy’s github repository [https://github.com/Rubilmax/peerpy].

Table of contents

	User manual
	General introduction

	Protocols
	Connection protocol

	Data protocol

	Discovery protocol

	Events & Handlers

	Python sources
	Connection

	Data

	EventHandler

	Exceptions

	Peer

	Protocol

User manual

General introduction

A Peer is an instance of a listening device, which is able to connect to another listening Peer.
A Connection represents a link between 2 Peer on a local network. It allows the serialization and the exchange of data over TCP.

Note

Every address is an IPv4 address.

Note

Every connection has 2 fixed peers, 1 fixed data type and possibly 1 fixed data size in case of a streaming connection (a connection over which we only exchange data of fixed size).

Note

Data type is one of:

	"raw" (any object pickle-serialized to bytes)

	"json" (any json-serializable object)

	"bytes" (explicit)

Protocols

Connection protocol

In the following scenario, Alice knows the address and listening port of Bob:

	Alice sends a HELLO header to Bob, containing her address and port and information about the desired connection: HELLO|address_name=127.0.0.1:51515&data_type=json

	Bob receives the HELLO header and answers with a ACCEPT or DENY header, depending on his choice.

	Alice waits for an answer from Bob within a given timeout, before giving up. If she receives a ACCEPT header from Bob, both acknowledge they have established a connection.

Note

For the underlying python’s socket, a connection is established from the first step of this protocol. As we only listen for utf-8 encoded bytes headers until the end of the previous protocol, this doesn’t present security issues.

Data protocol

In the following scenario, Alice and Bob already established a connection and thus have come to an agreement on data types for this connection (and possible data size, in case of a streaming connection). Alice wants to send Bob some data:

	Alice sends a DATA header to Bob, containing information about the following data: DATA|data_size=2048&data_type=raw

	Bob receives the header and reads it: he sees that the following data_type is raw. If they previously agreed on a strict connection, Bob shuts down the connection with Alice, as Alice violated their agreement. Otherwise, he proceeds with receiving data.

	As TCP is a reliable data exchange protocol, no further acknowledgment packet is exchanged and the data transmission is considered completed.

Discovery protocol

Peerpy comes with a builtin discovery protocol built over UDP. In the following scenario, Alice wants to discover people on her local network:

	Alice sends a PING packet to her router’s UDP broadcasting IPv4 address, containing her address and listening port: PING 192.168.0.2:51515.

	Bob listens for packets on his router’s UDP broadcasting IPv4 address, waiting for PING packets. He receives Alice’s packet and sends her a PONG packet, containing his address and listening port: PING 192.168.0.3:62626.

	Alice receives Bob’s PONG packet and thus knows that Bob is reachable over the address he shared.

Events & Handlers

Peer and Connection classes both inherits from the EventHandler superclass, which allows one to pass event handlers (python callables) which will respectively be called by the peer’s listening thread and the connection’s main thread upon the corresponding event.

Let’s say for example that you want to print your Peer object’s address and listening port (which is the default behavior). Then you just have to register your handler at your Peer instanciation:

with Peer(handlers={
 "listen": lambda peer: print(peer.address, peer.address_name)
}) as peer:

Here is a table showing every events and handlers possible:

Changed in version 1.2.0: Whenever a handler is called, the first argument is now the event emitter.

	Emitter

	Event

	Description

	Additional arguments

	Peer

	listen

	Triggered when peer is listening for connections

	

	offer

	Triggered when peer has received a connection offer.
This handler must return a boolean indicating whether to accept or deny the offer.

	The connection to accept or deny

	connection

	Triggered when peer has established a new connection

	The connection established

	stop

	Triggered when peer has stopped listening for connections

	

	Connection

	data

	Triggered when connection has received some data

	The data received

	close

	Triggered when connection has been terminated

	

Python sources

	Connection

	Data

	EventHandler

	Exceptions

	Peer

	Protocol

Connection

	
class Connection(peer, target_name: str, sock: socket.socket, buffer_size: int, **kwargs)

	Bases: peerpy.event_handler.EventHandler

	
close(force: bool = False)

	Closes the connection nicely.

	Parameters

	
	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to force close the connection.

	setting should be considered dangerous, as data can be lost. Defaults to False. (This) –

	
closed

	Returns whether this connection is closed.

	Returns

	a boolean indicating whether the connection is closed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
data_type

	Returns the data type each peers have agreed on for this connection.

	Returns

	the string representation of the data type

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send(data: Any)

	Send data to the target peer, serializing it to this connection’s default data format.

	Parameters

	data (Any) – the data to serialize and send.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if this connection’s default format is bytes and the data is not bytes

	Returns

	whether data was successfully sent.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
start_thread()

	Attempts to start this connection’s main thread, if not already running.

Data

	
class Data(_type: str, buffer: bytes = b'', decoded_data: Any = None, encoded_data: bytes = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
buffer = b''

	

	
decode()

	

	
decoded_data = None

	

	
encode()

	

	
encoded_data = None

	

	
get_type()

	

EventHandler

	
class EventHandler(event_names: List[str], handlers: Dict[str, Callable[[Any], Any]], min_handler_names: List[str] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Super class that registers and handle events, for objects such as Peer and Connection.

	
handle(event_name: str, *args) → Any

	Calls a handler for a specific event if existing, passing it arguments.

	Parameters

	event_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the event to trigger.

	Returns

	whatever the handler, if existing, returns

	Return type

	Any

	
set_handler(handler_type: str, handler: Callable)

	Sets a callable as an event handler.

	Parameters

	
	handler_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the event name.

	handler (Callable) – the handler to be called when event is triggered.

	
wait(event_name: str, timeout: float = None) → Any

	Waits for an event to trigger and returns the handler’s return value.

	Parameters

	
	event_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the event to wait for.

	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – how long maximum to wait for the event, in seconds. Defaults to None.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if event_name is not a valid event name for this handler.

	HandlerMissingException – if no handler is registered for the event, while it is a necessary handler.

	Returns

	whatever the handler returns.

	Return type

	Any

Exceptions

	
exception DataSizeError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised the data size doesn’t correspond to the connection’s data size.

	
exception DataTypeError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when data type doesn’t correspond to the connection’s data type.

	
exception HandlerMissingException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when an event handler is missing a handler for a specific event.

	
exception HeaderSizeError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when the header’s size is greater than the protocol’s header size.

Peer

	
class Peer(address: str = None, port: int = 0, **kwargs)

	Bases: peerpy.event_handler.EventHandler

	
address

	This peer’ address, in a normalized format

	Returns

	the normalized address (ipv4, port)

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	
address_name

	This peer’s normalized address name

	Returns

	the normalized address name ipv4:port

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
broadcast(data: Any)

	Broadcasts data to all the connected peers.

	Parameters

	data (Any) – the data to broadcast

	
connect(address: str, port: int = None, data_type: str = 'json', strict: bool = True, **kwargs) → peerpy.connection.Connection

	Attempts to start a connection with a remote peer located at (address, port).
Additional arguments are passed to the Connection constructor and sent to the remote peer right after successful
connection, so that it knows with what data type to communicate with.

	Parameters

	
	address (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ipv4 address of the remote peer, provided with the port if wanted (ipv4:port)

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – the port to use for the connection, if not provided in address. Defaults to None.

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – the data type to use for the connection. Defaults to “raw”.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether this connection is strict on data types. Defaults to True.

	buffer_size (int [https://docs.python.org/3/library/functions.html#int], optional) – the buffer size to use to receive data. Defaults to this peer’s buffer size.

	Returns

	the connection, if established

	Return type

	Connection

	
get_local_peers() → List[str]

	Returns the list of peers visible on the same local network.

	Returns

	the list of visible peers’ addresses

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
invisible

	Whether this peer is invisible to other peers on the same local network

	Returns

	this peer’s invisibility

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
start()

	Attempts to start this peer’s server and pinger (if needed).

	
stop(_async=False)

	Attempts to stop this peer and all its connections.

	Parameters

	_async (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to stop this peer asynchronously. Defaults to False.

	
timeout

	This peer’s default timeout

	Returns

	the default timeout

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Protocol

	
class Defaults(buffer_size: int = 8192, timeout: float = 2, peer_handlers: Dict[str, Callable] = <factory>, connection_handlers: Dict[str, Callable] = <factory>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
buffer_size = 8192

	

	
timeout = 2

	

	
class Headers(size: int = 128, separator: str = '|', values_separator: str = '&', key_separator: str = '=', data_header: str = 'DATA', hello_header: str = 'HELLO', accept_header: str = 'ACCEPT', deny_header: str = 'DENY', ping_header: str = 'PING', pong_header: str = 'PONG', data_types_parsers: Dict[str, Callable] = <factory>, required_hello_fields: List[str] = <factory>, required_data_fields: List[str] = <factory>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
accept_header = 'ACCEPT'

	

	
data_header = 'DATA'

	

	
deny_header = 'DENY'

	

	
hello_header = 'HELLO'

	

	
key_separator = '='

	

	
ping_header = 'PING'

	

	
pong_header = 'PONG'

	

	
separator = '|'

	

	
size = 128

	

	
values_separator = '&'

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 peerpy	

 	
 	
 peerpy.connection	

 	
 	
 peerpy.data	

 	
 	
 peerpy.event_handler	

 	
 	
 peerpy.exceptions	

 	
 	
 peerpy.peer	

 	
 	
 peerpy.protocol	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | P
 | S
 | T
 | V
 | W

A

 	
 	accept_header (Headers attribute)

 	
 	address (Peer attribute)

 	address_name (Peer attribute)

B

 	
 	broadcast() (Peer method)

 	
 	buffer (Data attribute)

 	buffer_size (Defaults attribute)

C

 	
 	close() (Connection method)

 	closed (Connection attribute)

 	
 	connect() (Peer method)

 	Connection (class in peerpy.connection)

D

 	
 	Data (class in peerpy.data)

 	data_header (Headers attribute)

 	data_type (Connection attribute)

 	DataSizeError

 	
 	DataTypeError

 	decode() (Data method)

 	decoded_data (Data attribute)

 	Defaults (class in peerpy.protocol)

 	deny_header (Headers attribute)

E

 	
 	encode() (Data method)

 	
 	encoded_data (Data attribute)

 	EventHandler (class in peerpy.event_handler)

G

 	
 	get_local_peers() (Peer method)

 	
 	get_type() (Data method)

H

 	
 	handle() (EventHandler method)

 	HandlerMissingException

 	
 	Headers (class in peerpy.protocol)

 	HeaderSizeError

 	hello_header (Headers attribute)

I

 	
 	invisible (Peer attribute)

K

 	
 	key_separator (Headers attribute)

P

 	
 	Peer (class in peerpy.peer)

 	peerpy.connection (module)

 	peerpy.data (module)

 	peerpy.event_handler (module)

 	
 	peerpy.exceptions (module)

 	peerpy.peer (module)

 	peerpy.protocol (module)

 	ping_header (Headers attribute)

 	pong_header (Headers attribute)

S

 	
 	send() (Connection method)

 	separator (Headers attribute)

 	set_handler() (EventHandler method)

 	
 	size (Headers attribute)

 	start() (Peer method)

 	start_thread() (Connection method)

 	stop() (Peer method)

T

 	
 	timeout (Defaults attribute)

 	(Peer attribute)

V

 	
 	values_separator (Headers attribute)

W

 	
 	wait() (EventHandler method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Peerpy documentation

 		
 User manual

 		
 General introduction

 		
 Protocols

 		
 Connection protocol

 		
 Data protocol

 		
 Discovery protocol

 		
 Events & Handlers

 		
 Python sources

 		
 Connection

 		
 Data

 		
 EventHandler

 		
 Exceptions

 		
 Peer

 		
 Protocol

